Osteoblasts responses to three-dimensional nanofibrous gelatin scaffolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased Osteogenic Potential of Pre-Osteoblasts on Three-Dimensional Printed Scaffolds Compared to Porous Scaffolds for Bone Regeneration

Background: One of the main challenges with conventional scaffold fabrication methods is the inability to control scaffold architecture. Recently, scaffolds with controlled shape and architecture have been fabricated using 3D-printing. Herein, we aimed to determine whether the much tighter control of microstructure of 3DP PLGA/β-TCP scaffolds is more effective in promoting osteogenesis than por...

متن کامل

Gelatin/hyaluronic acid nanofibrous scaffolds: biomimetics of extracellular matrix.

In living systems, extracellular matrix (ECM) plays a pivotal role in controlling cell behavior [1]. One of the most significant objectives in tissue engineering is to design and obtain scaffolds with the ability of biomimicking natural ECM in chemical compositions, physical structure, and biological functions [2,3]. Natural ECM is composed of a cross-linked porous network of multifibril collag...

متن کامل

Spray deposition of live cells throughout the electrospinning process produces nanofibrous three-dimensional tissue scaffolds

Compared with traditional in-vitro cell culture materials, three-dimensional nanofibrous scaffolds provide a superior environment for promoting cell functions. Since nanofibrous scaffolds have nanometer pore sizes, cells are unable to penetrate on their own, so must be incorporated into the scaffold during fabrication to ensure proper cell distribution. In this study, biodegradable and cytocomp...

متن کامل

Physically entrapped gelatin in polyethylene glycol scaffolds for three-dimensional chondrocyte culture

Developing tissue-engineered constructs for clinical use must satisfy the fundamental biologic parameters of biocompatibility, cell adhesiveness, and biodegradability. Physical entrapment of bioactive agents into synthetic polymers, as three-dimensional scaffolds, holds great promise for cell culture applications. Here, in an attempt to elucidate the effects of physical interlocking of natural ...

متن کامل

Nanofibrous scaffolds in biomedical applications

Nanofibrous scaffolds are artificial extracellular matrices which provide natural environment for tissue formation. In comparison to other forms of scaffolds, the nanofibrous scaffolds promote cell adhesion, proliferation and differentiation more efficiently due to having high surface to volume ratio. Although scaffolds for tissue engineering have been fabricated by various techniques but elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Biomedical Materials Research Part A

سال: 2012

ISSN: 1549-3296

DOI: 10.1002/jbm.a.34253